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Effects of Ion-Ion Collisions and Inhomogeneity in Two-dimensional Kinetic Ion
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Two-dimensional simulations with the BZOHAR [B.I. Cohen, B.F. Lasinski, A.B.

Langdon, and E.A. Williams, Phys. Plasmas 4, 956 (1997)] hybrid code (kinetic particle

ions and Boltzmann fluid electrons) have been used to investigate the saturation of

stimulated Brillouin backscatter (SBBS) instability including the effects of ion-ion

collisions and inhomogeneity.   Ion-ion collisions tend to increase ion-wave dissipation,

which decreases the gain exponent for stimulated Brillouin backscattering; and the peak

Brillouin backscatter reflectivities tend to decrease with increasing collisionality in the

simulations.  Two types of Langevin-operator, ion-ion collision models were

implemented in the simulations.  In both models used the collisions are functions of the

local ion temperature and density, but the collisions have no velocity dependence in the

first model.  In the second model, the collisions are also functions of the energy of the ion

that is being scattered so as to represent a Fokker-Planck collision operator.  Collisions

decorrelate the ions from the acoustic waves in SBS, which disrupts ion trapping in the

acoustic wave.  Nevertheless, ion trapping leading to a hot ion tail and two-dimensional

physics that allows the SBS ion waves to nonlinearly scatter remain robust saturation

mechanisms for SBBS in a high-gain limit over a range of ion collisionality.  SBS
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backscatter in the presence of a spatially nonuniform plasma flow is also investigated.

Simulations show that depending on the sign of the spatial gradient of the flow relative to

the backscatter, ion trapping effects that produce a nonlinear frequency shift can enhance

(auto-resonance) or decrease (anti-auto-resonance) reflectivities in agreement with

theoretical arguments.

PACS:  52.38.-r  52.65.Rr
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I. INTRODUCTION AND MOTIVATION

There is continuing interest in the nonlinear interaction of intense, coherent

electromagnetic waves with high-temperature fusion plasmas.  Nonlinear laser-plasma

interactions are a significant concern for the use of intense lasers in inertial confinement

fusion (ICF).  This study addresses physics affecting the nonlinear saturation of

stimulated Brillouin scattering (SBS), a process in which laser light is scattered by an ion

acoustic wave resonantly excited by the ponderomotive force of the incident and

scattered electromagnetic waves.

This work extends work published in Refs. 1 and 2 by including the separate

influences of ion-ion collisions and a spatially inhomogeneous plasma flow in two-

dimensional simulations of the nonlinear saturation of stimulated Brillouin backscatter

(SBBS).  One-dimensional (1D) and two-dimensional (2D) hybrid (particle ions and

Boltzmann fluid electrons) simulations have been performed previously with the

BZOHAR simulation code investigating the saturation of SBBS in a homogeneous

plasma slab as described in Refs. 1 and 2.  It was observed that ion trapping, wave

breaking, pump depletion, two-ion-wave decay instability and nonlinear ion Landau

damping, harmonic generation, and driven ion-acoustic turbulence contribute to the

saturation of SBBS.  The principal result in Ref. 2 was that SBBS reflectivities saturate at

significantly lower amplitudes in the 2D simulations than do SBBS reflectivities in 1D

simulations.  Ref. 2 showed that the decay of the SBBS ion wave (IAW) into longer

wavelength ion waves and quasi-modes (induced scattering by ions) in 2D is active

during the crash of the SBBS.1-5  After the SBBS crash in 2D the ion velocity distribution

supports substantial ion wave dissipation: it has a significant population of ions in the tail
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and is less flattened and not as inverted as in 1D. Ion mode coupling in 2D can provide

additional dissipation when the ion waves have finite amplitude.  There is evidence of

self-focusing or filamentation and forward SBS for ZTe/Ti>>1 after SBS backscatter

saturates in the 2D simulations reported in Ref. 2.  Because the SBS backscatter occurs

early in the simulation, saturates, and crashes, the backscatter is largely independent of

the subsequent forward scattering and self-focusing or filamentation.

Earlier work on the theory and simulation of SBS has shown the importance of

wave breaking and ion trapping,1-4,6-12 harmonic generation,13-15 and secondary instability

of the ion wave.1-5  In 1D simulations of SBBS, the inclusion of kinetic electrons has

made a difference in the saturation of SBBS.16,17 Rambo, Wilks, and Kruer undertook

hybrid simulations (fluid electrons and particle-in-cell ions) of SBBS including ion-ion

collisions in one spatial dimension.18  They observed that collisions affect the ions

resonant with the SBBS ion waves so as to inhibit the flattening of the ion velocity

distribution function due to trapping and thermalize the ion wave energy and the hot ion

tail into the bulk ion velocity distribution.  By maintaining slope in the ion velocity

distribution, the collisions serve to maintain the ion wave damping closer to its linear

value.  Moreover, heating of the bulk ions by collisions reduces the value of ZTe/Ti, which

increases ion wave damping.

Here we study the effects of ion-ion collisions on SBBS in simulations undertaken

in two spatial dimensions.  For a fixed value of ZTe/Ti we performed a series of

simulations varying the relative ion collisionality. We observe that peak SBBS

reflectivities are reduced with increasing ion-ion collisionality and that the saturation is

qualitatively similar to the collisionless results in Ref. 2 in most respects.  The saturation
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of high-gain SBBS in 2D is dominated by ion trapping that produces hot ion tails,

transient harmonic generation, and a temporal crash of the backscatter that is marked by

nonlinear scattering of the SBS ion waves into longer-wavelength, obliquely propagating

ion waves and ion quasi-modes (heavily damped by ions) in most cases.  These

simulations results and those reported in Refs. 1 and 2 support recent experimental

observations of the importance of ion trapping effects19,20 and the two-ion-wave decay21,22

associated with SBS.

In addition, we study the nonlinear saturation of SBBS in two dimensions

including a spatially inhomogeneous plasma flow.  In qualitative agreement with Ref. 11,

our simulations indicate that if ion trapping nonlinearities are sufficiently strong, i.e., if

the ion-wave nonlinear frequency shift due to ion trapping is comparable to or larger than

the ion-wave dissipation rate, then SBBS reflectivities are enhanced by auto-resonant

effects if the spatial gradient of the flow is parallel to the backscatter direction; and the

reflectivities are decreased by anti-auto-resonant effects if the spatial gradient of the flow

is anti-parallel to the backscatter direction.  As in Ref. 2, we focus on SBS ion-wave

nonlinearities associated with kinetic ions in a two-dimensional model in which electron

kinetic effects are deliberately omitted, which reduces the complexity of the physics and

facilitates performing relatively large 2D simulations and undertaking systematic

parameter scans.

The rest of the paper is organized as follows. Section II briefly reviews the

BZOHAR simulation model and the two distinct collision algorithms that have been

implemented along with a few test cases. In Section III we present simulations of

stimulated Brillouin scattering and nonlinear forward scattering, and accompanying
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analysis and interpretation.  SBBS simulation results including a spatial gradient in the

plasma flow are reported in Section IV.  Conclusions are given in Sec. V.

II. SIMULATION MODEL WITH ION-ION COLLISIONS

A. BZOHAR Hybrid Simulation Model

BZOHAR uses an efficient 2D hybrid simulation model with particle ions and

Boltzmann fluid electrons.1,2  A temporal-enveloped wave equation with fluid electron

current determines the electromagnetic vector potential which is linearly polarized

perpendicular to the simulation plane.  Poisson’s equation with Boltzmann electrons to

remove fast electron time scales yields the electric potential f where the total potential

seen by the electrons is 
  

† 

F( r x ,t) = f( r x ,t) + me
2 e ˜ A z /mec 2 and the electron density is given

by 

† 

ne = n0eeF /Te  Multiple species ions are advanced as superparticles with

nonrelativistic Newtonian equations of motion, and the ions only respond to the

longitudinal electric field 

† 

-—f(x,y) appropriate to the limit me/mi<<1.  The incident laser

propagates in x from left to right and enters the plasma at x=0.  The boundary conditions

are periodic in y and open/bounded in x (outgoing electromagnetic waves, fs=f=0 at x=0

and x=Lx, and the ions are confined by an imposed potential barrier).  No backscatter

electromagnetic seed is used here; the scattered electromagnetic waves grow from noise

deriving from ion particle discreteness that serves as a source for charge density

fluctuations and hence electron current fluctuations in the wave equation.

Two different ion-ion collision models have been implemented.23-25  Both collision

models are based on Langevin models wherein drag and diffusion increments to the ion

velocities are computed in Monte Carlo fashion using moments of the local ion velocity

distribution functions accumulated on the grid (spatially local density, mean drift
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velocity, and temperature). Drag-diffusion coefficients are calculated in the local drift

frame using a characteristic collision frequency that depends on the local density and

temperature. 23,25 The collision operators approximately conserve energy and momentum

in the limit of many particles per cell and many small-angle collisions per characteristic

collision time.  Particles are conserved trivially.

B. Velocity-independent Collision Operator

The first collision scheme employed uses the algorithm introduced by Jones, et

al.23  Jones, et al. devised a grid-based, Langevin collision operator for interspecies and

intraspecies Coulomb collisions.  Their like-particle Langevin collision operator has drag

and diffusion components:

† 

d
dt

v( )coll = -n (v- < v >) + A (1)

where  

† 

n = n0 = 4p1/2nZ4e4 ln L
3m2(T /m)3/2  (2)

and A is a random vector function distributed isotropically with probability

† 

P(ADt) = m
4pnDtT( )exp - mA⋅ADt2

4nDtT
Ê 

Ë 
Á 

ˆ 

¯ 
˜ (3)

defined for an implementation in two velocity dimensions.  Thus,

     

† 

ADt = 2 < v ⋅ v >1/2 (nDt)1/2 -ln(1- ranf(1))[ ]1/2 cosq,sinq[ ],q = 2p ¥ ranf(2), (4)

where <v>  and the density n and temperature T in n  are calculated locally by

interpolating to the grid and back to the particles using linear area weighting (cloud-in-

cell, CIC).  The algorithm statistically conserves momentum and energy (through first

order in nDt ).  To stabilize a cooling instability in the algorithm due to finite sampling

statistics,23,26 we replaced the local vth=(T/m)1/2 in the denominator of n with vth
*=evth+(1-
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e)vth(t=0) . We find that with e~0.9-0.97 there is no cooling instability, and the local

collision frequency can evolve in space and time in 2D BZOHAR simulations.

To test the implementation of the Jones, et al. collision algorithm we undertook

three test simulations.  The first test was whether the collision algorithm preserved a

Maxwellian (“first do no harm”) shown in Fig. 1.  A 2D Maxwellian was initialized, and

the plasma was allowed to evolve collisionally over 2000Dt with Ncell=100, n0Dt=0.001

and no laser field present.  The collision operator was applied every 10Dt.  Kinetic energy

and momentum conservation errors associated with the collision algorithm were <1%,

and the ion velocity distribution function remained Maxwellian.  With nearest-grid-point

(NGP) interpolation used in the collision algorithm kinetic energy and momentum

conservation errors were worse (< 3%).  There was ~6% self-

Figure 1.  Preservation of a Maxwellian: comparison of evolved ion velocity distribution

functions with no collisions (bcoll3) and with CIC collisions n0Dt=0.001 (bcoll10)

showing that the Maxwellian is preserved and there is similar self-heating.
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heating with or without collisions.  With 3.2M ions and Ncell=100, 2000 time steps

corresponded to 6100 CPU sec with CIC collisions and 1700 secs with no collisions.

We next undertook simulations testing whether a Maxwellian was preserved with

Ncell=16, the test-particle number density employed in our SBS simulations.  Again a 2D

Maxwellian was initialized, and the plasma was allowed to evolve collisionally over

2000Dt with n0Dt=0.001; and the collision operator was applied every 10Dt.  Kinetic

energy and momentum conservation errors were ~13% for NGP collisons and ~3% for

CIC compared to no collisions.  Self-heating in particle codes27and hybrid codes28

increases with decreasing Ncell and was ~38% with no collisions over 2000Dt in

simulation bcoll17.  We conclude that the errors in the NGP collisions are unacceptably

large for Ncell=16.

The amount of self-heating in the absence of a laser field for Ncell=16 is

significant.  The SBS simulations in Ref. 2 used Ncell=16 for most of the results.

However, self-heating does not compromise any of the physics conclusions in Ref. 2.  At

this point we examine self-heating issues.  Figure 2 compares two collisionless

simulations, bcoll17 with no incident laser field and bcem33n with an incident laser field.

The 2D baseline simulation parameters in Ref. 2 are as follows: 6000Dx ¥ 256Dy,

Lx=192l0, Ly=16l0, k0Dx=0.2, wpiDt=0.2, wsDt=0.08, wst=414 ~ 40ps, ne/nc=0.1, Be

plasma (Z=4, A=9), le=Dx, mh/me=1836, ZTe/Ti=2 to 16, Te=2 keV, collisionless,

v0/ve=0.2 (I0~2¥1015 W/cm2 for l0=1/3 mm), number of ion superparticles Ni= 105 ¥Ny

(2D), where wpi is the ion plasma frequency, ws is the ion acoustic frequency associated

with the backscatter, le is the electron Debye length, l0 is the incident laser wavelength,

Te,i are the electron and ion temperatures, Lx,y are the system dimensions, Dx≈Dy/2 are the
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grid sizes, I0 is the laser intensity incident from the left, ne is the electron density, nc is the

critical electron density, and t is the typical duration of the simulation.  In these

simulations ky=±(0,1,2,3)¥2p/Ly for the electromagnetic wave field, and the full

complement of 2D modes for the electrostatic potential was used.  The simulations with

this restriction on ky for the electromagnetic wave field allow forward SBS, filamentation,

and self-focusing at least in a limited way while preventing SBS sidescatter from being

artificially preferred over backscatter because of the periodic boundaries in y.   The

results in Fig. 2 were obtained with ZTe/Ti=16 and electron quiver velocity in the laser

field v0/ve=0 and 0.2, respectively.  We note that the self-heating effects are considerably

smaller than the effects due wave-particle interactions accompanying strong SBS, which

pull out a hot ion tail in the x velocities and cause more transverse heating on the left side

Figure 2.  Snapshots of x and y ion velocity distribution functions from collisionless

simulations with no incident laser (bcoll17) and with and incident laser and strong SBBS

(bcem33n). Also shown is the relative growth of kinetic energy in bcoll17 vs. time step.

t=450

lefthigh SBS
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of the x domain where the SBBS ion wave and backscatter amplitudes are largest than on

the right side of the domain farther into the plasma.

Birdsall and Langdon27 point out that smoothing of the charge density to partially

suppress short wavelength fluctuations before solving for the self-consistent electric

potential reduces the self-heating rate.  The self-heating rate for ZTe/Ti=16 was reduced

three-fold from 2.4¥10-4/Dt in bcoll17 to 0.8¥10-4/Dt in bcoll18 with local digital

smoothing27 of the ion charge density using a five-point stencil, (1,1,4,1,1)/8. The five-

point stencil produces a multiplicative smoothing factor in (kx,ky) space:

† 

(1/2) cos2(kxDx /2) + cos2(kyDy /2)( ) .  Figure 3 shows results from bcoll18, which can be

compared directly to bcoll17 results in Fig. 2. We obtain even better smoothing results

using successive 1D three-point stencils, (1,2,1)/4, first in x and then in y, for which the

k-space smoothing factor is 

† 

cos2(kxDx /2)cos2(kyDy /2) ; and the observed heating rate is

further reduced to 0.2¥10-4/Dt for the same parameters as in bcoll17 and bcoll18.   In

using digital smoothing in SBBS simulations when no deliberate seeding of the

backscatter electromagnetic wave is introduced, one needs to be mindful that the

smoothing reduces the thermal noise in the charge densities, which then beat with the

incident laser to provide a reduced noise source for the backscatter.  The reduced noise

source can then affect the reflectivity.  Figure 4 shows an SBBS simulation using the

baseline parameters with ZTe/Ti=16 and five-point stencil smoothing of the ion charge

density.  These results can be compared directly to the bcem33n results (no smoothing)

shown in Fig. 2.   Production of a hot ion tail in x and transverse heating in y, both of

which are more pronounced on the left side of the domain where the backscatter and

IAW amplitudes are strongest, is more obvious with the application of digital smoothing.
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Figure 3. Collisionless 2D simulation bcoll18 with no incident laser and with digital

smoothing of the ion charge density: snapshots of the x and y ion velocity distribution
functions and relative ion kinetic energy growth vs. time step.

Figure 4.  Collisionless 2D simulation bcoll20 with five-point-stencil digital smoothing of

the ion charge density and strong SBBS: snapshots of the x and y ion velocity distribution

functions over regions centered at x=Lx/4, Lx/2, and 3Lx/4 and integrated in y.

We now return to consideration of test simulations for the collision algorithm of

Jones, et al.  The relaxation of a strong temperature anisotropy is a convenient test case.

A 2D anisotropic Maxwellian fi(ux,uy) was initialized with Ty=0 and Tx≠0 in bcoll23. The

plasma was allowed to evolve collisionally over 1000Dt with Ncell=16 and n0Dt=0.001 The
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collision operator was applied every 10Dt.  The simulation results in Fig.  5 agree fairly

well with the analytical solution for the relaxation of the temperature difference, which is

given by 

† 

Tx - Ty = (Tx0 - Tyo)exp(-2n0t)  for a collision operator with no velocity

dependence.  We undertook an additional test simulation with the Jones, et al. collision

algorithm, the relaxation to a Maxwellian of an initially square velocity distribution

function.  The relaxation is quite rapid as reported in Ref. 23.  We return to this test case

in the next sub-section.

Figure 5. Relaxation of a strong temperature anisotropy: relative anisotropy vs. time and
snapshots of the ion velocity distribution (log10(f) vs. square of velocities, ux

2 and uy
2).

C. Fokker-Planck Collision Operator

The second Coulomb collison operator that we implemented retains the proper

velocity dependence of a Fokker-Planck Coulomb collision model.24,25    The Jones et al.

collision operator has no velocity dependence in the drag and diffusion coefficients..

References 24 and 25 present Monte Carlo collision algorithms (Langevin representation)

with drag and diffusion tensor coefficients 

† 

DW|| , DW||
2 , DW^

2  per Dt for the velocity

drag parallel (<0) to the test particle velocity vector and the variances for the diffusive

increments for parallel and perpendicular velocities that are functions of test particle

speed and can be calculated in terms of error functions for an assumed isotropic
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Maxwellian target distribution on which the test particles scatter.  The diffusive kicks

satisfy Gaussian statistics in Ref. 25.  In the reference frame co-moving with the local

mean drift, the 3D collision operator represented as a Langevin equation to O(Dt) is

† 

Dv = FdDt + Q (5)

Reference 25 outlines how to represent the fully nonlinear Fokker-Planck

equation for Coulomb collisions within a particle code by solving for the two scalar

Rosenbluth potentials from which Fd and Q are self-consistently determined, which

involves integrating over the target-particle velocity distribution function as a function of

the test-particle velocity.  Here we approximate the target velocity distribution as an

isotropic Maxwellian using the evolving local ion density and temperature, for which the

Langevin Fokker-Planck collision operators introduced in Refs. 24 and 25 are fully

equivalent.  We refer the reader to Refs. 24 and 25 for specific formulae used in the

collision operator.  Of particular interest is the discussion in Ref. 25 of the differences in

the drag and diffusion coefficients between the Fokker-Planck collision operator and the

Jones, et al. collision operator, which are graphed in Fig. 1 of Ref. 25.  The Jones, et al.

collision operator is relatively less collisional at low energies and much more collisional

at high energies.   We make use of two features in the algorithm introduced in Eqs. (20)

and (24) of Ref. 25 that improve energy conservation by compensating for errors due to

the expansion in 

† 

n*Dt  inherent in the Langevin equation and due to the statistical nature

of the collision algorithm:

† 

Fd Æ Fd (1- FdDt /2 v),Fd < 0 (6)

where v is the test-particle speed in the local mean-drift frame and 

† 

FdDt /v <1 is

required for the expansion to be sensible; and after the collisional scattering occurs in the
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mean-drift frame, the particle velocities are renormalized by a factor that is very close to

unity,

† 

v"= (KE j /KE j ')1/2v' (7)

where KEj is the kinetic energy in the mean drift frame of the jth block of particles (the

block local to the test particle) before the collisional scattering and KEj’ is the

corresponding kinetic energy after the collisional scattering.

To streamline the computation of the drag and diffusion coefficients in the

Fokker-Planck collision operator, we introduce simple Padé approximations that are fit

with a least-squares determination relative to the error functions in Refs. 24 and 25:

† 

FdDt /v = DW|| /v = -n*Dt /(1+1.08(v / 2vth )2.46) (8a)

† 

DW||
2 /vth

2 = - DW|| /v (8b)

† 

DW^
2 /vth

2 = n*Dt /(1+ 0.186(v / 2vth )1.85) (8c)

where 

† 

n* = 23/2n0.  The Padé approximants are compared to the numerical evaluations

of the drag-diffusion coefficients computed from the error functions in Fig. 6.  The

random velocity vector 

† 

Q = (Q||,Q 1̂,Q^2) for velocity displacements parallel and

perpendicular to the test-particle velocity vector in the local mean-drift frame is chosen

from the Gaussian probability distribution function:

† 

R(Q) = 1
(2p )3/2<W||

2>1/2<W^
2>

exp -
Q||

2

2<W||
2>

-
Q^1

2 +Q^2
2

2<W^
2>

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ (9)

This Langevin Fokker-Planck collision operator is only consistent with a three-

dimensional velocity representation; therefore we define a third velocity coordinate vz in

BZOHAR that does not respond to electric fields and only participates in the collisions.
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Figure 6.  Padé approximations for the Fokker-Planck drag and perpendicular velocity

variance diffusion coefficients vs. v/(2vth
2)1/2 compared to those calculated numerically

from error functions.

The first test case with the Fokker-Planck collision operator was preserving a

Maxwellian ion velocity distribution with no laser fields present.  In Fig. 7 we show the

results of collisionally evolving the ion velocity distribution functions using CIC

interpolation, Ncell=16, n0Dt=0.001, collisions applied every 10Dt, and with five-point-

stencil local smoothing of the ion charge density.  The 3D Maxwellian is preserved in

bncoll3, and the relative self-heating rate is 0.35x10-4/Dt.  The 3D Fokker-Planck

collision algorithm is 2-3 times slower than the Jones, et al. 2D collision algorithm.

Figure 7. Snapshots of the 3D ion velocity distribution function at t=0 and 2000Dt with

n0Dt=0.001 and Fokker-Planck collisions preserving a Maxwellian (simulation bncoll3).

The second test case with the Fokker-Planck collision operator was the relaxation
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of a weak temperature anisotropy.  A 3D anisotropic Maxwellian fi(ux,uy,uz) was

initialized with Ty=0.9Tx and Tx=Tz≠0. The plasma was allowed to evolve collisionally

over 1000Dt with Ncell=16 and n0Dt=0.0005  The collision operator was applied every 7Dt

with n*Dtc=0.01  The simulation results (bncoll7c) are compared in Fig. 8 with an

approximate analytical solution for the relaxation of a weak temperature anisotropy,

which is given by Trubnikov29: 

† 

Tz - Ty = (Tz0 - Tyo)exp(-0.23n0
iit) , where

† 

no
ii = 3p1/2n0.  With a stronger relative temperature anisotropy at t=0, a faster relaxation

rate is observed, as is expected from theory.

Figure 8.  Fokker-Planck collisional relaxation of a weak temperature anisotropy (initially

Ty=0.9Tx and Tx=Tz≠0) with Ncell=16 and n0Dt=0.0005: relative temperature anisotropy vs.

dimensionless time 2n0t.

A third test case of the Fokker-Planck collision operator was undertaken in which

a 3D isotropic, square velocity distribution fi(ux,uy,uz)= const for |ux|,|uy|,|uz| < √3 vi was

initialized.  The plasma was allowed to collisionally relax with Ncell=16 and n0Dt=0.5¥10-3

Fokker-Planck collisions were applied every 7Dt with n*Dtc=0.01  fi(ux,uy,uz) rapidly

relaxes toward a Maxwellian.  Snapshots of the collisionally evolving velocity
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distribution functions for the velocity-independent and Fokker-Planck collision schemes

are presented in Fig. 9.  Formation of the Maxwellian tail is faster with the velocity-

independent collisions.

Figure 9. Relaxation of an initially square velocity distribution function.  Snapshots of
ion velocity distribution functions from simulations with velocity-independent collisions

(bcoll21) and Fokker-Planck collisions (bncoll6), Ncell=16 and n0Dt=0.5¥10-3

As a final test case for the Fokker-Planck collision operator, we examined the

damping of a small-amplitude ion acoustic wave for finite collisionality.  Both ion

Landau damping and ion collisions contribute to the damping rate.30  We initialized a

standing wave with ZTe/Ti=8, k=0.052, le=Dx=0.2, Dt=0.3, N/DxDy=64, ky=0, and

n0Dt=8x10-4 (bcoll30f) or collisionless (bcoll30e). Collisionless theory gives

† 

w + ig = 0.0085 - i0.00026, while in the simulation (bcoll30e) 

† 

w + ig = 0.0082 - i0.00026

is observed (Fig. 10).  With collisions and   

† 

kl i = k vi/ 2n0 = 4.4 , collisional linear

theory30 gives 

† 

w + ig = 0.0084 - i0.00032, while in the simulation (bcoll30f)

† 

w + ig = 0.0081- i0.00029 is observed (Fig. 10).   We note that dn/n=0.05 initially.  At

this wave amplitude, the ion trapping frequency is 

† 

wtrap /Rew ~|dne /ne |1/2~ 0.2 , so

that 2p/wtrap~3400, from which we conclude that trapping effects (negative frequency

Velocity-independent collisions Fokker-Planck collisions
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shift and damping reduction) should set in for t > 1700 in the simulations.31 In

consequence, data for the frequency and damping rate should be compared to linear

theory over just the first two periods of the wave oscillation.  Agreement of the

simulations (Fig. 10) with linear theory is within 10%.

Figure 10.  Damping of an ion acoustic wave due to ion Landau damping and collisions

for a collisionless simulation (bcoll30e) and a collisional simulation (bcoll30f,
n0Dt=8x10-4,   

† 

kl i = 4.4 ): mode amplitudes as functions of time at x=Lx/2.

III. STIMULATED BRILLOUIN SCATTERING WITH ION COLLISIONS

We have performed simulations studying stimulated Brillouin backscattering in

two spatial dimensions including ion-ion collisions varying the relative collisionality and

using the two different collision algorithms.  We first estimate the relative collisionality

for the conditions corresponding to our baseline parameters introduced in Ref. 2 and used

here.  For an incident laser with wavelength l0=1/3mm, electron density ne~1021cm-3 ,

ne/nc~0.1 relative to critical density, and a beryllium plasma with electron temperature

Te=2keV and ZTe/Ti=16, the characteristic ion-ion collision frequency is

† 

n0
ii = 3p1/2n0 ~ 4 ¥1011s-1 and 

† 

n0 ~ 0.8 ¥1011s-1using Eq.(2).  This can be compared

to the ion acoustic frequency ws~2¥1013rad/s in such a plasma for backscatter with

kle=0.4, and the trapped ion bounce frequency for a wave amplitude |dne/ne|~0.01 is
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† 

wtrap = (dne/ne)1/2ws ~ 2 ¥1012 rad /s . Thus, two orders of magnitude separate the ion

collision frequency and the ion acoustic frequency; and ions can be trapped before they

are collisionally decorrelated from the ion wave if the ion wave is sufficiently large.  The

simulations described here were run for 9000Dt which corresponds to wst~745 and

~70ps; and the incident laser was uniform in y at x=0.

Figure 11 shows the results of a series of simulations using the Jones, et al.,

collision algorithm for ZTe/Ti=16 and our baseline parameters.  Instantaneous and average

SBBS reflectivities decrease with increasing collisionality.  Local smoothing of the

charge density with successive three-point, one-dimensional smoothing in x and y was

used.  The amplitude gain exponent in Fig. 11 is calculated from8,11,32

† 

GSBBS
a = 1

16
v0

2

ve
2

ne
nc

ws
g s

w0Lx
vg (1+k2le

2)
(10)

where gs is the ion wave damping rate, w0 is the pump laser frequency, vg is the laser

group velocity, and k is the SBBS ion wave wavenumber.  For the velocity-independent

collision operator, the total ion-wave linear damping rate is given approximately by

† 

gs = gLD + n0 /2 , where gLD~0.0023ws is the ion Landau damping rate for ZTe/Ti=16.

Figures 12 and 13 show results from one of the simulations (bcoll26, n0Dt=2¥10-4) from

the series in Fig. 11.  The saturation of SBBS is qualitatively similar to the collisionless

results analyzed in Ref. 2: ion trapping and secondary instability of the SBBS ion wave

accompany a temporal crash of the SBBS reflectivity, and late in time forward Brillouin

scattering becomes pronounced.  The forward Brillouin scattered light is identified in the

power spectrum of the transmitted light, which has features that are frequency down-

shifted slightly from the incident light frequency; moreover, the system is not wide
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enough in y to support filamentation.2  Backscatter is dominant on the left, and ion

trapping produces an energetic tail.  Nonlinear IAW decay has heated the transverse

velocity distribution at the time shown while collisions isotropize the distribution

function over a longer time.

Figure 11.  Peak and 70ps average SBBS reflectivities for parameters: ZTe/Ti=16,
v0/ve=0.2, k0le=0.2 , mBe/me=real mass ratio, ne/nc=0.1, and Jones, et al. collision model

Figure12. SBS simulation bcoll26 with velocity-independent collisions and parameters:
ZTe/Ti=16, v0/ve=0.2, k0le=0.2, real mass ratio for Be, ne/nc=0.1, and n0Dt=2¥10-4

Instantaneous and average reflectivity, R(t) and 

† 

< R(t) >= t-1 dt'R(t ')
0

t
Ú ; reflected

electromagnetic power spectrum vs. time at x=0 and y=Ly/2 vs. (w-w0)/ws and time;

power spectrum for 

† 

ef(Lx /4,Ly /2
2

 vs. w/ws and time.

left left

laser propagation  Æ
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Figure13. SBS simulation bcoll26 with velocity-independent collisions and parameters:

ZTe/Ti=16, v0/ve=0.2, k0le=0.2 , real mass ratio for Be, ne/nc=0.1, and n0Dt=2¥10-4

Electromagnetic potential |Az| vs. x and y at t=1050; x and y velocity distribution
functions on the left side of the domain at t=0 and 1200.

A series of two-dimensional BZOHAR simulations was performed with Fokker-

Planck collisions over a range of collisionality: n0Dt={5¥10-5, 2¥10-4, 8¥10-4, 1.6¥10-3}.

Figure 14 shows the results of the SBBS reflectivity as a function of collisionality

parameter and the concomitant linear convective gain using Eq. (10) and the Fokker-

Planck calculations due to Randall30 for the linear ion-wave damping rate due to ion

Landau damping and ion-ion collisions.  The baseline simulation parameters introduced

earlier for ZTe/Ti=16 were used.  We note that the normalized Fokker-Planck drag and

parallel diffusion coefficients for a Maxwellian velocity distribution in Ref. 25

[approximated in Eqs.(8a) and (8b) here] are significantly smaller than the corresponding

value in the Jones, et al., velocity-independent collision model at the ion velocity

resonant with the SBBS ion wave:  vx/vi=(ZTe/Ti)1/2=4, so that the resonant ions are less

collisional in the Fokker-Planck mode.  Moreover, the ion wave damping rate gs with

Fokker-Planck collisions is O(1/3) of that in the velocity-independent collision model for

n0>>gLD and ZTe/Ti=16 (compare Table I in Ref. 30 to 

† 

gs = gLD + n0 /2  for the velocity-

independent collisions).   The peak SBBS reflectivity decreases very weakly with

increasing collisionality, while the average reflectivity over 70ps increases significantly.
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The values of the peak reflectivities with a small decrease over the entire range of

collisionality are similar to the reflectivities over the reduced range of collisionality

0£n0Dt£4¥10-4 in the simulations with the velocity-independent collision model to

account for the difference in the relative collisionalities of the resonant ions between the

two collision models.  The increase of the average reflectivity with increasing

collisionality is due to the crash of the SBBS proceeding more slowly with increased

collisionality and Fokker-Planck collisions.   We note that the threshold for the two-ion

wave decay increases with increasing ion collisionality and its growth rate above

threshold decreases.  Could collisional inhibition of the two-ion-wave decay account for

the slower rate of crash of the SBBS reflectivity?  However, the crash times and averaged

reflectivies do not increase with increasing collisionality in our SBBS

Figure 14. Peak and average SBBS reflectivities as functions of collisionality (Fokker-
Planck collisions) and corresponding linear gain exponent for parameters: ZTe/Ti=16,

v0/ve=0.2, k0le=0.2 , mBe/me=real mass ratio, ne/nc=0.1, Lx~192l0,  and Ly~16l0.
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simulations with the velocity-independent collision model.  Examination of the

simulations in detail leads to a possible explanation for this difference in the simulation

results from the two collision models.

Figures 15 and 16 show results from a simulation (bcoll26nn) in which Fokker-

Planck collisions were used with n0Dt=2¥10-4  and our baseline parameters.  The results

here should be compared to those in Figs. 12 and 13 for the same parameters, but in

which the velocity-independent collision model was used.  The qualitative features are

quite similar: ion trapping and ion wave decay are observed; a hot ion tail is formed in

the longitudinal velocity distribution preferentially near the entrance to the plasma of the

incident laser where the SBBS ion wave amplitude is large; and there is transverse ion

heating where the SBBS ion wave is large.   Collisions isotropize the velocity distribution

function and return it to a Maxwellian over a longer time.  After the SBBS reflectivity

Figure 15.  SBBS instantaneous and cumulative time-average reflectivities vs. time,

power spectrum for |ef(Lx/4,Ly/2)/Te|2 vs. w/ws and time, and power spectrum for reflected

electromagnetic power vs. (w-w0)/ws and time, for parameters: ZTe/Ti=16, v0/ve=0.2,

k0le=0.2 , mBe/me=real mass ratio, ne/nc=0.1, Lx~192l0, Ly~16l0, Fokker-Planck collisions,

and n0Dt=2¥10-4  (bcoll26nn).

crashes, forward SBS is observed.  The SBBS reflectivity with the Fokker-Planck
collisions is somewhat higher, which correlates with the higher linear gain exponent and

(w-w0)/wsw/ws
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Figure 16. Absolute value of the electromagnetic potential |Az(x,y)| at t=900, ion velocity

distribution functions f(ux) and f(uy) at t=0 and 900 in simulation bcoll26nn for
parameters: ZTe/Ti=16, v0/ve=0.2, k0le=0.2 , mBe/me=real mass ratio, ne/nc=0.1, Lx~192l0,

Ly~16l0, and Fokker-Planck collisions with n0Dt=2¥10-4.

Figure 17. Reflectivities as functions of time and power spectra for |ef(Lx/4,Ly/2)/Te|2 vs.

w/ws and time for parameters: ZTe/Ti=16, v0/ve=0.2, k0le=0.2 , mBe/me=real mass ratio,

Lx~192l0, Ly~16l0, ne/nc=0.1, Fokker-Planck model (n0Dt=1.6¥10-3, bcoll28nn) and

Jones, et al. model (n0Dt=3.2¥10-3, bcoll29s)

the reduced collisionality of the resonant ions, as compared to the simulation with

velocity-independent collisions.
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Figures 17 and 18 show results comparing simulations with Fokker-Planck

collisions (n0Dt=1.6¥10-3, bcoll28nn) and Jones, et al. collisions (n0Dt=3.2¥10-3, bcoll29s)

for our baseline parameters.  The peak reflectivity with Fokker-Planck collisions is higher

than with velocity-independent collisions and correlates with having a higher gain

exponent owing to the weaker SBBS ion wave damping rate.  In Fig. 17 the reflectivity

with Fokker-Planck collisions takes longer to relax, and two-ion-wave decay products are

more evident in the streak spectra for |ef(Lx/4,Ly/2)/Te|2.  The velocity distribution

Figure 18. Velocity distribution functions f(ux) and f(uy)  on the left side of the domain at

t=0 and 1050 for parameters: ZTe/Ti=16, v0/ve=0.2, k0le=0.2 , mBe/me=real mass ratio,

Lx~192l0, Ly~16l0, ne/nc=0.1, Fokker-Planck model (n0Dt=1.6¥10-3, bcoll28nn) and

Jones, et al. model (n0Dt=3.2¥10-3, bcoll29s)

functions at t=1050 indicate that the hot ion tail produced by trapping in the SBBS ion

wave is thermalized and isotropized to high degree by the Jones, et al. collisions, but

much less so by the Fokker-Planck collisions.  The effective ZTe/Ti is lower and there is



27

more slope in the f(ux) velocity distribution function at the sound speed with the Jones, et

al. collisions; hence, the ion Landau damping is higher and the ion trapping nonlinear

frequency shift is much smaller than with the Fokker-Planck collisions.

The observations related to Figs. 17 and 18 suggest the following interpretation of

the SBBS reflectivity results.  Previous analyses have shown that the two-ion-wave decay

is sensitive to both the damping rate of the decay products and having the pump ion wave

frequency be above its normal mode frequency (possibly nonlinear).1,2  Thus, the

conditions for the two-ion-wave decay are relatively unfavorable in simulation bcoll29s

(Jones, et al. collisions) and more favorable in bcoll28nn (Fokker-Planck collisions).  In

bcoll29s the strong collisions in combination with the energy deposition from the SBBS

ion wave rapidly evolve the velocity distribution function to a state in which there is

much less flattening of the f(ux) ion velocity distribution, which then reduces the

nonlinear frequency shift of the primary SBBS ion wave and much increases its ion

Landau damping resulting in quenching the SBBS reflectivity.  The two-ion-wave decay

becomes subdominant to direct damping of the primary SBBS ion wave as the

collisionality is increased in the simulations with the Jones, et al. collisions, which

increases the ion Landau damping in both the linear and nonlinear regimes.  In contrast,

two-ion-wave decay is more evident in the SBBS simulations with Fokker-Planck

collisions.  While increasing the collisionality increases ion wave damping, decreases the

gain exponent, and reduces the peak reflectivity for both collision models in the early part

of the simulations, on a longer time scale increased collisionality inhibits the two-ion-

wave decay because it elevates the damping rate of the decay product ion waves and

reduces the nonlinear frequency shift of the primary SBBS ion wave associated with the
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flattening of the ion velocity distribution due to ion trapping.  Thus, in the simulations

with Fokker-Planck collisions in which the two-ion-wave decay is important, the

increased inhibition of the two-ion-wave decay with increased collisionality contributes

to increasing the quench time for the SBBS by retarding the relaxation of the primary

SBBS ion wave.  We conclude that the differences in the importance of the two-ion-wave

decay with increasing collisionality in the simulations with the two collision models can

account for the differences observed in the SBBS time-averaged reflectivities.

IV.  SATURATION OF BRILLOUIN BACKSCATTER WITH A FLOW

GRADIENT

Plasma flow gradients have an important influence on stimulated Brillouin

scattering instability and alter both its linear convective gain and the nonlinear saturation.

Generally, a linear flow gradient can localize SBBS to a resonance region whose width

depends jointly on the dissipation present and the gradient length affecting the frequency

and wavenumber matching conditions.  Short linear gradient lengths limit the convective

gain of the instability.8,32  Reference 11 showed that the nonlinear frequency shift due to

ion trapping, which increases in the direction of the backscatter convective gain, can

partially compensate for the dephasing caused by a spatial gradient in the plasma flow

that is parallel to the backscatter direction and thus enhance the SBBS convective

amplification nonlinearly (“auto-resonance”).   When the flow gradient is oriented

opposite to the backscatter direction, then the nonlinear frequency shift due to ion

trapping is additive to the dephasing effect of the spatial gradient; and there is a nonlinear

“anti-auto-resonant” decrease in the SBBS convective amplification.
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Williams, et al.11 considered auto-resonant enhancement and anti-auto-resonant

decrease in the stimulated Brillouin scattering driven cross-beam interaction (where two

incident lasers optically mix in the plasma flow and produce a beat-wave that resonantly

excites an ion wave at the Doppler-shifted beat frequency and beat wavenumber of the

two lasers).  Analytical and numerical results were obtained for the steady-state cross-

beam amplification with the ion wave damping rate a specified parameter.11 The analysis

shows that finite auto-resonant or anti-auto-resonant effects can be expected when the

magnitude of the ion trapping nonlinear frequency shift is competitive with the ion wave

damping rate, and these effects are stronger the larger the linear convective amplification

is (see Fig. 4 of Ref. 11).

We performed a series of collisionless 2D SBBS simulations with flow gradients

either parallel or anti-parallel to the backscatter direction.  The backscatter grew from

noise to large amplitude, saturated with ion trapping and ion wave decay effects evident,

and relaxed to minuscule reflectivities.  The ion wave damping rates (estimated by taking

the ratio of the time derivative of the ion kinetic energy divided by twice the ion wave

energy density integrated over the volume) varied in time as the ion velocity distribution

function evolved.   Thus, comparing the steady-state analytical theory of Williams, et al.11

directly to these SBBS simulations is not feasible for several reasons.  However, we can

use the Williams, et al., calculations to deduce in what circumstance auto-resonant and

anti-auto-resonant effects are expected and then look for these effects in the simulations.

A measure of the strength of the ion trapping frequency shift is given by

† 

ˆ b ~ (Dwtrap /gs)4  where gs is the SBBS ion wave damping rate and

† 

Dwtrap = -0.1(dne /ne)1/2ws ª -0.003ws  is the ion trapping frequency shift for ZTe/Ti=16
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and the peak ion wave amplitudes observed.  For 1¥10-3≤n/ws≤ 2¥10-3  observed near the

temporal peak of the SBBS reflectivity, 

† 

ˆ b ~ 103 -104  in our simulations.  For the

baseline parameters defined earlier and with 

† 

(Lx /2)d(Vdrift /cs) /dx = ±{0.05,0.1,0.2} for

the flow gradients, the linear convective gain exponent for intensity is GI
SBBS=5-20, where

† 

GSBBS
I = 1
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and 

† 

Lv = (dRee /dx)-1 = cs(2dVdrift /dx)-1.8,11,32  Thus, we expect auto-resonant and anti-

auto-resonant effects to be evident in the simulations for the given parameters.

Figure 19 shows the results of the series of 2D collisionless SBBS simulations

with flow gradients and the baseline parameters.  One series plotted used v0/ve=0.2 with

five-point-stencil digital smoothing of the ion charge density, and the other series used

v0/ve=0.15 with successive three-point stencil digital smoothing in x and y which gave a

lower amplitude noise source for the backscattering.  The former series with higher

incident pump power has higher gain exponents and reflectivities for the same flow

gradient.  With flow gradients parallel to the backscatter direction (negative x), there is

auto-resonant enhancement of the SBBS reflectivities relative to those for the anti-auto-

resonant orientation of the flow gradient, except at the lowest values of intensity gain

exponent where the theory in Ref. 11 indicates that there should be little or no auto-

resonant enhancement of the reflectivities.  The peak reflectivities are affected by pump

depletion, which limits the enhancement due to auto-resonance.
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Figure 19.  Peak and 70ps average reflectivities vs. linear convective gain exponents for
backscatter intensity with parameters: ZTe/Ti=16, k0le=0.2, v0/ve=0.15 and 0.2,

mBe/me=real mass ratio, ne/nc=0.1, collisionless, (Lx/2cs)dVdrift/dx=±(0.05,0.1,0.2)

In Figures 20 and 21 we show results from a representative simulation (bgradv5d)

with a linear flow gradient directed parallel to the backscatter direction.  As in the

collisionless and collisional simulations with no flow, ion trapping produces a hot ion

tail; and ion-wave decay and trapping saturate SBBS, while forward SBS occurs later in

time with the largest amplitudes on the right side of the simulation box. Ion heating in uy

results from the obliquely propagating decay ion waves accompanying the quench of the

SBBS.
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Figure 20. SBBS instantaneous reflectivity and cumulative time-average reflectivity vs.

time, and power spectra plotted as functions of frequency and time for the reflected
electromagnetic power at x=0 and y=Ly/2,  |ef/Te|2 at x=Lx/4 and y=Ly/2, and |ef/Te|2 at

x=3Lx/4 and y=Ly/2, for parameters: ZTe/Ti=16, v0/ve=0.2, k0le=0.2, mBe/me=real mass

ratio, ne/nc=0.1, no ion collisions, and linear velocity gradient (Lx/2cs) dVdrift/dx=-0.05

Figure 21.  Ion velocity distribution functions f(ux) and f(uy) at t=0 and 900 for simulation
bgradv5d with linear velocity gradient (Lx/2cs)d/vdrift/dx=-0.05  showing formation of a

hot ion tail and transverse heating.
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V.  CONCLUSIONS
We have reported two-dimensional simulations with kinetic ions addressing the

effects of ion-ion collisions and plasma flow gradients on the saturation of stimulated

Brillouin backscattering.   Ion-ion collisions have been implemented in the BZOHAR

simulation code using two different Langevin-equation algorithms, one with velocity-

independent collisions23 and the other with a Fokker-Planck collision operator in three

velocity dimensions. 24,25 Both algorithms use the ion density, mean velocity, and

temperature accumulated from the evolving ion particle distribution function locally in

space, but are simplified by assuming that the multi-dimensional ion velocity distribution

is close to an isotropic Maxwellian.  The latter assumption is violated by the formation of

a hot-ion tail in f(ux) due to trapping of ions in the SBBS ion waves; however, the

transverse ion velocity distribution functions remain close to an isotropi Maxwellian.

Over time the hot ion tail is thermalized by the collisions; and the ion velocity

distribution function can relax toward an isotropic Maxwellian at a higher temperature

after the SBBS quenches.

Brillouin backscatter peak reflectivities are reduced in the presence of ion-ion

collisions.  Ion collisions are another source of dissipation for the ion waves, restore slope

to the velocity distribution function (flattened due to trapping), and, as stated, thermalize

the hot ion tail formed by trapping in the SBS ion wave (effectively increasing ZTe/Ti), as

pointed out in earlier work.18  Increased damping of the SBBS ion wave assists in

reducing the peak backscatter reflectivities.  Ion trapping and secondary ion wave

instabilities remain important saturation mechanisms for strong SBBS, ZTe/Ti >> 1, and

the range of collisionality investigated with the more physical Fokker-Planck collision

model.  The two-ion-wave decay instability is relatively more important with increasing



34

ion collisionality in the simulations with the Fokker-Planck collision model than in the

simulations with the Jones, et al., velocity-independent, collision model, which

influences the relaxation of SBBS and the time-averaged reflectivities.

SBS backscatter simulations including a spatial gradient in the plasma flow

velocity have been performed that show increases in the reflectivity due to auto-resonant

effects (relative to anti-auto-resonant effects) associated with the interplay of the

nonlinear frequency shift due to ion trapping with the linear dephasing effect of a spatial

gradient in the plasma flow velocity.  The simulations with flow gradients give further

evidence of the robustness of the SBBS saturation mechanism involving ion trapping and

secondary ion wave instabilities in two dimensions for strong SBBS, ZTe/Ti >> 1, and

conditions of interest for current laser-fusion experiments.32
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